Find the exact values of:  - $\sec 225^{\circ}$
 - $\cot \dfrac{4\pi}{3}$
  
         - $-\sqrt{2}$
 - $\dfrac{\sqrt{3}}{3}$
  
         Sketch $$y = \sec x$$ in the interval $[0, 2\pi]$, labelling the coordinates of any intersections with the axes and the turning points.     
       Sketch $$y = \cot x$$ in the interval $[0, 2\pi]$, labelling the coordinates of any intersections with the axes.     
       Sketch the graph of $$y = -\cot 2x$$ in the interval $[0, 2\pi]$, labelling the coordinates of any intersections with the axes.     
       Sketch the graph of $$y = 2\sec\left(x-\frac{\pi}{3}\right)$$ in the interval $[0, 2\pi]$, labelling the coordinates of any intersections with the axes and the turning points.     
       Sketch, in the interval $-2\pi \leq x \leq 2\pi$ $$y=3+5\cosec x$$ and write down the range of values for $k$ for which the equation $3+5\cosec x=k$ has zero solutions.     
  $-2 < k < 8$  
            
        Prove the following:  - $\cot\theta+\tan\theta \equiv \cosec\theta\sec\theta$
 - $(1-\cos x)(1+\sec x) \equiv \sin x\tan x$
  
       See video.   
      Prove the following:  - $\dfrac{\cos x}{1-\sin x}+\dfrac{1-\sin x}{\cos x} \equiv 2\sec x$
 - $\dfrac{\cos\theta}{1+\cot\theta} \equiv \dfrac{\sin\theta}{1+\tan\theta}$
  
       See video.   
      Solve, in the interval $0\leqslant \theta \leqslant 360^{\circ}$: $$5\cot\theta=-2$$     
  $112^{\circ}, 292^{\circ}$   
      Solve, in the interval $0\leqslant \theta \leqslant 360^{\circ}$: $$3\sec^2\theta-4=0$$     
  $30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$   
      Solve, in the interval $0\leqslant \theta \leqslant 360^{\circ}$: $$\cot^2\theta-8\tan\theta=0$$     
  $26.6^{\circ}, 207^{\circ}$   
      Solve, in the interval $0\leqslant \theta \leqslant 360^{\circ}$: $$2\sin\theta=\cosec\theta$$     
  $45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$   
      Solve, in the interval $-\pi \leqslant \theta \leqslant \pi$: $$2\cosec^2\theta-3\cosec\theta = 0$$     
  $0.730, 2.41$   
      Solve, in the interval $-\pi \leqslant \theta \leqslant \pi$: $$3\cot\theta=2\sin\theta$$     
  $\pm \dfrac{\pi}{3}$   
      Prove that $$\dfrac{\sin x\tan x}{1-\cos x} - 1 \equiv \sec x$$ and hence explain why $$\dfrac{\sin x\tan x}{1-\cos x} - 1 =-0.5$$ has no solutions.     
  $\sec x \neq 0.5$   
      Given $$3\tan^2\theta+4\sec^2\theta=5$$ and that $\theta$ is obtuse, find the exact value of $\sin\theta$.     
  $\dfrac{\sqrt{2}}{4}$   
      Given $a = 4\sec x$, $b = \cos x$, and $c=\cot x$,  - Find $b$ in terms of $a$.
 - Find $c^2$ in terms of $a$.
  
         - $\dfrac{4}{a}$
 - $\dfrac{16}{a^2-16}$
  
         Prove:  - $\sec^4\theta-\tan^4\theta \equiv \sec^2\theta+\tan^2\theta$
 - $1-\cos^2\theta \equiv (\sec^2\theta-1)(1-\sin^2\theta)$
  
       See video   
      Prove:  - $\sec^2\theta+\cosec^2\theta \equiv \sec^2\theta\cosec^2\theta$
 - $(\sec\theta-\sin\theta)(\sec\theta+\sin\theta) \equiv \tan^2\theta+\cos^2\theta$
  
       See video.   
      Given that $x=\sec\theta + \tan\theta$,  - Show that $\dfrac{1}{x} = \sec\theta - \tan\theta$.
 - Express $x^2+x^{-2}+2$ in terms of $\theta$ in its simplest form.
  
         - See video.
 - $4\sec^2\theta$
  
         Given $$2\sec^2\theta - \tan^2\theta = p$$ write $\cosec^2\theta$ in terms of $p$.     
  $\dfrac{p-1}{p-2}$   
      Prove: $$\dfrac{\sec\theta-1}{\sec\theta+1}\equiv \tan^2\dfrac{\theta}{2}$$     
  See video.   
      Prove: $$\cot(A+B) \equiv \dfrac{\cot A\cot B -1}{\cot A + \cot B}$$     
  See video.   
      Solve, in the interval $-\pi \leqslant x \leqslant \pi$: $$\dfrac{1+\cot x}{1+\tan x}=5$$     
  Convert to $\cos 2x$ and $\sin 2x$ to get $x = -2.94, 0.197$