3. Given that $$\arcsin k = \alpha, \quad 0< k < 1$$ and $\alpha$ is in radians, find the first two positive values of $x$ for which $\sin x = k$ in terms of $\alpha$.
$\alpha, \pi - \alpha$
4. Given $$\mathrm{arcsin}\ x = k \quad 0 < k < \frac{\pi}{2}$$
Write $\cos k$ in terms of $x$.
Write $\tan k$ in terms of $x$.
$\sqrt{1-x^2}$
$\dfrac{x}{\sqrt{1-x^2}}$
5. Sketch:
$y=\dfrac{\pi}{2}+2\arcsin x$
$y = \pi - \arctan x$
6. Sketch:
$y=\arccos(2x+1)$
$y=-2\arcsin(-x)$
7. Sketch $$y=\mathrm{arcsec}\ x$$ and state its range.
$0 \leqslant y \leqslant \pi$, $y \neq \frac{\pi}{2}$