Express the following in terms of (positive) acute angles:  - $\sin240^{\circ}$
 - $\cos(-50^{\circ})$
 - $\tan600^{\circ}$
  
         - $-\sin120^{\circ}$
 - $\cos50^{\circ}$
 - $\tan60^{\circ}$
  
         Write the following in terms of $\sin\theta$, $\cos\theta$, or $\tan\theta$ only:  - $\sin(180^{\circ}-\theta)$
 - $\cos(\theta-540^{\circ})$
 - $\tan(540^{\circ}-\theta)$
  
         - $\sin\theta$
 - $-\cos\theta$
 - $-\tan\theta$
  
         Find the exact values of:  - $\cos495^{\circ}$
 - $\tan(-225^{\circ})$
 - $\sin(-60^{\circ})$
  
         - $-\dfrac{\sqrt{2}}{2}$
 - $-1$
 - $-\dfrac{\sqrt{3}}{2}$
  
         Simplify:  - $1-\cos^2\frac{1}{2}\theta$
 - $5\sin^23\theta+5\cos^23\theta$
  
         - $\sin^2\frac{1}{2}\theta$
 - $5$
  
         Simplify:  - $(1+\sin x)^2+(1-\sin x)^2+2\cos^2x$
 - $\sin^4\theta+\sin^2\theta\cos^2\theta$
  
            Prove the following identities:  - $(\sin\theta+\cos\theta)^2\equiv2\sin\theta\cos\theta + 1$
 - $\dfrac{1}{\cos\theta}-\cos\theta\equiv\sin\theta\tan\theta$
  
       See video   
      Prove the following identities:  - $(2\sin\theta-\cos\theta)^2+(\sin\theta+2\cos\theta)^2\equiv5$
 - $\sin^2x\cos^2y-\cos^2x\sin^2y\equiv\sin^2x-\sin^2y$
  
       See video   
      Given $\tan\theta=\dfrac{5}{12}$ and $\theta$ is acute, find the exact value of:  - $\sin\theta$
 - $\cos\theta$
  
         - $\dfrac{5}{13}$
 - $\dfrac{12}{13}$
  
         Given $\cos\theta=-\dfrac{3}{5}$ and $\theta$ is obtuse, find the exact value of:  - $\sin\theta$
 - $\tan\theta$
  
         - $\dfrac{4}{5}$
 - $-\dfrac{4}{3}$
  
         Given $\sin\theta=-\dfrac{7}{25}$ and $270^{\circ}<\theta<360^{\circ}$, find the exact value of:  - $\cos\theta$
 - $\tan\theta$
  
         - $\dfrac{24}{25}$
 - $-\dfrac{7}{24}$
  
         For the following pair of equations, find a single equation in terms of $x$ and $y$, but not $\theta$: $$x=\sin\theta \quad y=\cos^2\theta$$     
  $x^2+y=1$   
      For the following pair of equations, find a single equation in terms of $x$ and $y$, but not $\theta$: $$x=\sin\theta+\cos\theta \quad y=\cos\theta-\sin\theta$$     
  $x^2+y^2=2$   
      Find the angle marked $x$ in the following triangle.   
 
     $79.9^{\circ}$   
      By first finding $x$, find the area of the following triangle.   
 
     $63.2$   
      By first finding $x$, find the area of the following triangle.   
 
     $258$   
      Find the reflex angle marked $x$ in the following triangle.   
 
     $302^{\circ}$   
      Calculate the area of a triangle with side lengths $10$, $13$, and $18$.     
  $63.5$   
      Find the area of the quadrilateral $ABCD$.   
 
     $25.6$