1. Express the following in terms of (positive) acute angles:
  1. $\sin240^{\circ}$
  2. $\cos(-50^{\circ})$
  3. $\tan600^{\circ}$
2. Write the following in terms of $\sin\theta$, $\cos\theta$, or $\tan\theta$ only:
  1. $\sin(180^{\circ}-\theta)$
  2. $\cos(\theta-540^{\circ})$
  3. $\tan(540^{\circ}-\theta)$
3. Find the exact values of:
  1. $\cos495^{\circ}$
  2. $\tan(-225^{\circ})$
  3. $\sin(-60^{\circ})$
4. Simplify:
  1. $1-\cos^2\frac{1}{2}\theta$
  2. $5\sin^23\theta+5\cos^23\theta$
5. Simplify:
  1. $(1+\sin x)^2+(1-\sin x)^2+2\cos^2x$
  2. $\sin^4\theta+\sin^2\theta\cos^2\theta$
6. Prove the following identities:
  1. $(\sin\theta+\cos\theta)^2\equiv2\sin\theta\cos\theta + 1$
  2. $\dfrac{1}{\cos\theta}-\cos\theta\equiv\sin\theta\tan\theta$
7. Prove the following identities:
  1. $(2\sin\theta-\cos\theta)^2+(\sin\theta+2\cos\theta)^2\equiv5$
  2. $\sin^2x\cos^2y-\cos^2x\sin^2y\equiv\sin^2x-\sin^2y$
8. Given $\tan\theta=\dfrac{5}{12}$ and $\theta$ is acute, find the exact value of:
  1. $\sin\theta$
  2. $\cos\theta$
9. Given $\cos\theta=-\dfrac{3}{5}$ and $\theta$ is obtuse, find the exact value of:
  1. $\sin\theta$
  2. $\tan\theta$
10. Given $\sin\theta=-\dfrac{7}{25}$ and $270^{\circ}<\theta<360^{\circ}$, find the exact value of:
  1. $\cos\theta$
  2. $\tan\theta$
11. For the following pair of equations, find a single equation in terms of $x$ and $y$, but not $\theta$: $$x=\sin\theta \quad y=\cos^2\theta$$
12. For the following pair of equations, find a single equation in terms of $x$ and $y$, but not $\theta$: $$x=\sin\theta+\cos\theta \quad y=\cos\theta-\sin\theta$$
13. Find the angle marked $x$ in the following triangle.
14. By first finding $x$, find the area of the following triangle.
15. By first finding $x$, find the area of the following triangle.
16. Find the reflex angle marked $x$ in the following triangle.
17. Calculate the area of a triangle with side lengths $10$, $13$, and $18$.
18. Find the area of the quadrilateral $ABCD$.