1. Consider the lengths $DE$ and $AD$ in the following diagram to prove the addition formulae for $\sin(\alpha+\beta)$ and $\cos(\alpha+\beta)$.
2. Consider the lengths $FC$ and $AF$ in the following rectangle to prove the subtraction formulae for $\sin(\alpha-\beta)$ and $\cos(\alpha-\beta)$.
3. Write the following in the form $\sin(x + \alpha)$:
  1. $\dfrac{1}{\sqrt{2}}(\sin x + \cos x)$
  2. $\dfrac{1}{2}(\sin x + \sqrt{3}\cos x)$
4. Given $\tan\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}$, find the exact value of $\tan x$
5. Given $180^{\circ} < \alpha < 270^{\circ}$, $\beta$ is obtuse, and $$\sin \alpha = -\frac{3}{5} \quad \cos \beta = -\frac{12}{13}$$ find:
  1. $\cos(\alpha-\beta)$
  2. $\tan(\alpha+\beta)$
6. Given $\alpha$ is reflex, $\beta$ is obtuse, and $$\tan \alpha = \frac{7}{24} \quad \sin \beta = \frac{5}{13}$$ find:
  1. $\sin(\alpha+\beta)$
  2. $\tan(\alpha-\beta)$
7. Find exact values for:
  1. $\tan 75^{\circ}$
  2. $\cos 105^{\circ}$
8. Given that $x=\sin\theta$, $y=\sin2\theta$, and that $\theta$ is acute, find an expression for $y$ in terms of $x$.
9. Given that $\tan\theta = \dfrac{3}{4}$ and that $\theta$ is acute, find the value of $\sin4\theta$.
10. Solve, in the interval $0 \leqslant \theta < 360^{\circ}$:
  1. $3\cos\theta = 2\sin(\theta+60^{\circ})$
  2. $\sin(\theta+30^{\circ})+2\sin\theta=0$
11. Solve the following equations in the interval $0 \leqslant \theta < 2\pi$:
  1. $3\cos2\theta = 2\cos^2\theta$
  2. $2\sin2\theta=3\tan\theta$
12. Solve, in the interval $0 \leqslant x < \pi$:
  1. $\cos^2x-\sin2x=\sin^2x$
  2. $\sin4x=\cos2x$
13. Solve, in the interval $0 \leqslant x < 2\pi$:
  1. $5\sin2x+4\sin x = 0$
  2. $2\cos^2\frac{x}{2}-4\sin^2\frac{x}{2}=-3$
14. By expanding $R\sin(x+\alpha)$, where $R>0$ and $\alpha$ is acute, solve, in the interval $0 \leqslant \theta < 360^{\circ}$:
  1. $6\sin x + 8\cos x = 5\sqrt{3}$
  2. $8\cos x + 15\sin x = 10$
15. By expanding $R\sin(x-\alpha)$, where $R>0$ and $\alpha$ is acute, solve, in the interval $0 \leqslant \theta < \pi$: $$5\sin\tfrac{\theta}{2}-12\cos\tfrac{\theta}{2}=-6.5$$
16. By expanding $R\sin(x-\alpha)$, where $R<0$ and $\alpha$ is acute, solve, in the interval $0 \leqslant \theta < \pi$: $$2\cos3\theta-3\sin3\theta = -1$$
17. Solve, in the interval $0\leq\theta\leq2\pi$: $$\sqrt{2}\cos\left(\theta-\dfrac{\pi}{4}\right)+(\sqrt{3}-1)\sin\theta=2$$
18. The height, $H$ metres, of water at a harbour is modelled by $$H = 5 + 4\sin(30t)^{\circ} + 3\cos(30t)^{\circ}$$ where $t$ is the time in hours after midnight. Boats can leave the harbour when the height of the water is at least 4 m.
  1. Find the maximum height of water at the harbour.
  2. What is the latest time before 9am, to the nearest minute, that a boat can leave the harbour?
19. Given that $\cos\theta = \dfrac{3}{5}$ and that $\dfrac{3\pi}{2} \leq \theta \leq 2\pi$, find the exact value of $\cos3\theta$.
20. The temperature of a swimming pool is given by $$25 + 4\cos (12t)^{\circ} + 2\sin (12t)^{\circ}$$ where $t$ is the time in hours after the pool opens. What percentage of the time that the pool is open for is the temperature below $26$?
21. Solve, in the interval $0 \leqslant x < 2\pi$: $$4\tan\tfrac{1}{2}x=\tan x$$
22. Solve, in the interval $0 \leqslant x < 2\pi$: $$3\cos x - \sin\frac{x}{2}-1=0$$
23. Find the minimum value of $$\dfrac{18}{50+9\cos\theta+40\sin\theta}$$ and the smallest positive value of $\theta$ at which this occurs.
24. By expressing $$5\sin^2\theta-3\cos^2\theta + 6\sin\theta\cos\theta$$ in the form $$a\sin2\theta + b\cos2\theta + c$$ find the minimum and maximum values of this expression.