1. Write the following in the form $a\sqrt{b}$, where $b$ is a prime number:
  1. $\sqrt{300}-\sqrt{48}$
  2. $\sqrt{37.5}$
2. Write the following in the form $a+b\sqrt{c}$:
  1. $(7+\sqrt{5})(3-\sqrt{5})$
  2. $\dfrac{\sqrt{2}}{1-\sqrt{2}}$
3. Simplify
  1. $\dfrac{\sqrt{48}-\sqrt{600}}{\sqrt{12}}$
  2. $\dfrac{\sqrt{2}}{4+3\sqrt{2}}$
4. Simplify
  1. $\sqrt{48}-\dfrac{6}{\sqrt{3}}$
  2. $\dfrac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$
5. Simplify
  1. $\left(\dfrac{25x^4}{4}\right)^{-\frac{1}{2}}$
  2. $\dfrac{(32x^3)^{\frac{2}{5}}}{2x\sqrt{x}}$
6. Solve $32\sqrt{2}=2^x$.
7. Given that $(2+\sqrt{5})x=6-\sqrt{5}$, find $x$ in the form $a+b\sqrt{5}$.
8. Solve:
  1. $10+x\sqrt{8}=\dfrac{6x}{\sqrt{2}}$
  2. $5^x\times5^{x+4}=25$
9. Given that $y = \dfrac{1}{64}x^3$, find $4y^{-1}$ in the form $kx^n$.
10. Write:
  1. $2^6\times2^2$ in the form $8^n$
  2. $5\times4^{\frac{2}{3}}+3\times16^{\frac{1}{3}}$ in the form $2^n$
11. Find the integer $n$ such that $$n<5\sqrt{3}<n+1$$
12. The area of a rectangle of width $3\sqrt{2}-3$ is 6. Find the height of the rectangle.
13. Show that $\left(\dfrac{4}{3}\right)^{\frac{1}{2}}+\left(\dfrac{1}{3}\right)^{-\frac{1}{2}}$ can be written in the form $\dfrac{a}{b}\sqrt{c}$.
14. Given that $y=2^x$, express the following in terms of $y$:
  1. $2^{2x-1}$
  2. $8^x-4^{-x}$
15. Write the following in the form $2^n$:
  1. $\Big(\big(2^3\big)^2\Big)^3$
  2. $\big(2^3\big)^{\big(2^3\big)}$
  3. $2^{\Big(\big(3^2\big)^3\Big)}$
  4. $2^{\Big(3^{\big(2^3\big)}\Big)}$
16. A triangle $ABC$ has $AB=BC=4+\sqrt{3}$ and $AC=4+4\sqrt{3}$. $M$ is the midpoint of $AC$. Find the exact length of $BM$ and hence find the area of the triangle.
17. By first expanding $(1-\sqrt{5})^2$, solve $y^2=3-\sqrt{5}$.
18. A triangle $ABC$ has $AB = 2\sqrt{3}-1$, $BC = \sqrt{3}+2$, and $\angle ABC = 90^{\circ}$.
  1. Find the area of the triangle.
  2. Show that $AC = 2\sqrt{5}$.
  3. Find the exact value of $\tan(\angle ACB)$.
19. Solve $$25^{2x-1}=0.2^{x+3}$$
20. Simplify $$\sqrt{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}$$
21. Evaluate $$\dfrac{1}{\sqrt{1}+\sqrt{2}} + \dfrac{1}{\sqrt{2}+\sqrt{3}} + ... + \dfrac{1}{\sqrt{24}+\sqrt{25}}$$
22. Given that $(a+b\sqrt{2})^2=59+30\sqrt{2}$, and that $a$ and $b$ are both positive, find $a$ and $b$.
23.
  1. Express $\sqrt[3]{24}$ in the form $a\sqrt[3]{3}$.
  2. Hence find the integer $n$ such that $$\sqrt[3]{n} = \sqrt[3]{24}+\sqrt[3]{81}$$
24. By considering $(a+b\sqrt{2})^2$, find $\sqrt{17-12\sqrt{2}}$.