The lower bound of the area under the graph of $y=\dfrac{1}{x}$ between $x=1$ and $x=5$ can be approximated using rectangles of width $1$. - Write down this approximation using Sigma notation.
- Evaluate it.
- $\displaystyle\sum_{n=2}^5 \dfrac{1}{n}$
- $\dfrac{77}{60}$
For $$\int_0^{2.5} 2x^2 \mathrm{d}x$$ Use rectangles of width $0.5$ to find: - its upper bound;
- its lower bound.
- $\dfrac{55}{4}$
- $\dfrac{15}{2}$
Use the trapezium rule with 4 equally spaced strips to estimate the area of the region bound by the curve $y=\dfrac{1}{1+\sqrt{x}}$, the coordinate axes and the line $x=1$, giving your answer to 3 decimal places
$0.635$
Given $\mathrm{f}(1) = 9$, $\mathrm{f}(2.25) = 17$, $\mathrm{f}(3.5) = 25$, $\mathrm{f}(4.75) = 21$, and $\mathrm{f}(6) = 13$, - Use the trapezium rule with all the values given to find an estimate for the integral $\displaystyle\int_1^6\mathrm{f}(x)\ \mathrm{d}x$
- Given that $\mathrm{f}(x)$ is a smooth curve, state whether your answer is an over or under estimate of the actual area.
- $92.5$
- Concave, underestimate
Use the trapezium rule with 4 equally spaced strips to estimate the value of $$\displaystyle\int_0^4 \dfrac{2^x}{x+2}\ \mathrm{d}x$$ correct to 3 significant figures.
$4.85$
Use the trapezium rule with 5 equally spaced strips to estimate the value of $$\displaystyle\int_1^3 (\sqrt{x}-\log x)^2\ \mathrm{d}x$$ correct to 3 significant figures.
$2.51$
- Estimate $\displaystyle\int_0^{\frac{\pi}{3}} \mathrm{e}^{\tan^2x}\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Hence estimate $\displaystyle\int_0^{\frac{\pi}{3}} \mathrm{e}^{\sec^2x}\ \mathrm{d}x$
- Are the estimates are likely to be over or underestimates?
- Are the estimates are likely to be accurate?
- $4.12$
- $11.2$
- Convex, overestimate
- Large errors possible because of large jump between $y$ values of last two strips
- Estimate $\displaystyle\int_0^2 2^{\sqrt{x}}\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Hence estimate $\displaystyle\int_0^2 2^{\sqrt{x}} + 3\ \mathrm{d}x$
- Hence estimate $\displaystyle\int_0^2 2^{\sqrt{x}+3}\ \mathrm{d}x$
- Estimate $\displaystyle\int_0^{\frac{\pi}{3}} \cos^2 x\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Hence estimate $\displaystyle\int_0^{\frac{\pi}{3}} \sin^2 x\ \mathrm{d}x$
- Estimate $\displaystyle\int_0^{\frac{\pi}{3}} \sqrt{\tan x}\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Will the answer increase or decrease if more strips are used?
- $0.769$
- Mostly concave so increases with more strips
- Estimate $\displaystyle\int_0^1 \mathrm{e}^{-x^2}\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Hence estimate $\displaystyle\int_0^1 \mathrm{e}^{-x^2+3}\ \mathrm{d}x$
- Estimate $\displaystyle\int_2^{18} \ln\dfrac{2}{\sqrt{4+\sqrt{x}}}\ \mathrm{d}x$ using the trapezium rule with 4 equally spaced strips.
- Hence estimate $\displaystyle\int_2^{18} \ln(4+\sqrt{x})\ \mathrm{d}x$
- $-4.47$
- $2(16\ln2 + 4.47) = 31.1$