1. Use the substitution $u = \sqrt{x+1}$ to find $$\int_0^1 \dfrac{x}{\sqrt{x+1}} \ \mathrm{d}x$$
2. Use the substitution $u = \sqrt{2x+1}$ to find $$\int_0^1 x\sqrt{2x+1} \ \mathrm{d}x$$
3. Use integration by parts to find $$\int x\sin x \ \mathrm{d}x$$
4. Use integration by parts to find $$\int x\cos 3x \ \mathrm{d}x$$
5. Find the area bound by the $x$ axis, the lines $x = 4$ and $x = 11$, and the curve with parametric equations $$x = t^3+3 \quad y = \dfrac{2}{3t}$$
6. Find the finite area bound by the curve with parametric equations $$x = 3t+\sin t \quad y = 2\sin t; \quad 0 \leqslant t \leqslant \pi$$ and the $x$ axis.
7. Find the area bound by the $x$ axis, the lines $x = 7$ and $x = 15$, and the curve with parametric equations $$x = 4t-1 \quad y = 16t^{-2}$$
8. The curve with parametric equations $$x = 4 - t^2 \quad y = t^2+3t$$ crosses both the $x$ axis and the $y$ axis in the first quadrant. Find the finite area bound by the curve and the positive coordinate axes.
9. Use a suitable substitution to find $$\int \sqrt{x}\sqrt{x\sqrt{x}+1} \ \mathrm{d}x$$
10. Use a suitable substitution to find $$\int x^3\sqrt{x^2+1} \ \mathrm{d}x$$
11. Use a suitable substitution to find $$\int (x^2+1)\sqrt{x-2} \ \mathrm{d}x$$
12. Use integration by parts to find $$\int x\mathrm{e}^{x} \ \mathrm{d}x$$
13. Use a suitable substitution to find $$\int \dfrac{x^2+2x}{x^2+2x+1} \ \mathrm{d}x$$
14. Use integration by parts to find $$\int 3x\mathrm{e}^{-x} \ \mathrm{d}x$$
15. Use integration by parts to find $$\int 2x^2\mathrm{e}^x \ \mathrm{d}x$$
16. Find $$\int \dfrac{1}{x^2+6x+9} \ \mathrm{d}x$$
17. Find $$\int x\tan(x^2)\sec(x^2) \ \mathrm{d}x$$
18. Find $$\int \dfrac{\ln x}{x^2} \ \mathrm{d}x$$
19. Find $$\int 3x^3(x^2+4)^5 \ \mathrm{d}x$$
20. Find $$\int x^2\cos x \ \mathrm{d}x$$
21. Find $$\int x\sin x \cos x \ \mathrm{d}x$$
22. Find $$\int (\tan(2x)+\cos(2x))^2 \ \mathrm{d}x$$
23. Find $$\int \arccos x \ \mathrm{d}x$$
24. Find $$\int \ln x \ \mathrm{d}x$$
25. Find $$\int \mathrm{e}^{2x}\sin x \ \mathrm{d}x$$
26. The curve with parametric equations $$x = 36t^2 - \pi^2 \quad y = \dfrac{1}{8}\sin 3t; \quad t \geqslant 0$$ crosses the $x$ axis at $(3\pi^2,0)$ and the $y$ axis at $(0, 0.125)$. Find the exact finite area bound by the curve and the coordinate axes.
27. Use the substitution $x = 2\sin \theta$ to find the exact value of $$\int_0^{\sqrt{2}} \dfrac{x^2}{\sqrt{4-x^2}} \ \mathrm{d}x$$
28. Use the substitution $x = \tan \theta$ to find the exact value of $$\int_0^1 \dfrac{1}{(1+x^2)^2} \ \mathrm{d}x$$
29. Use the substitution $x = \csc \theta$ to find the exact value of $$\int_{\sqrt{2}}^2 \dfrac{\sqrt{x^2-1}}{x} \ \mathrm{d}x$$
30. Use integration by parts to find $$\int x^3\sqrt{9-x^2} \ \mathrm{d}x$$