1. Use the substitution $u = \sqrt{x+1}$ to find $$\int_0^1 \dfrac{x}{\sqrt{x+1}} \ \mathrm{d}x$$
$\dfrac{4-2\sqrt{2}}{3}$
2. Use the substitution $u = \sqrt{2x+1}$ to find $$\int_0^1 x\sqrt{2x+1} \ \mathrm{d}x$$
$\dfrac{6\sqrt{3}+1}{15}$
3. Use integration by parts to find $$\int x\sin x \ \mathrm{d}x$$
$\sin x - x\cos x + c$
4. Use integration by parts to find $$\int x\cos 3x \ \mathrm{d}x$$
$\dfrac{1}{9}(3x\sin(3x)+\cos(3x))$
5. Find the area bound by the $x$ axis, the lines $x = 4$ and $x = 11$, and the curve with parametric equations $$x = t^3+3 \quad y = \dfrac{2}{3t}$$
$3$
6. Find the finite area bound by the curve with parametric equations $$x = 3t+\sin t \quad y = 2\sin t; \quad 0 \leqslant t \leqslant \pi$$ and the $x$ axis.
$12$
7. Find the area bound by the $x$ axis, the lines $x = 7$ and $x = 15$, and the curve with parametric equations $$x = 4t-1 \quad y = 16t^{-2}$$
$16$
8. The curve with parametric equations $$x = 4 - t^2 \quad y = t^2+3t$$ crosses both the $x$ axis and the $y$ axis in the first quadrant. Find the finite area bound by the curve and the positive coordinate axes.
$24$
9. Use a suitable substitution to find $$\int \sqrt{x}\sqrt{x\sqrt{x}+1} \ \mathrm{d}x$$
$\dfrac{4}{9}(x^{\frac{3}{2}}+1)^{\frac{3}{2}}+c$
10. Use a suitable substitution to find $$\int x^3\sqrt{x^2+1} \ \mathrm{d}x$$
$\dfrac{(3x^2-2)(x^2+1)^{\frac{3}{2}}}{15}+c$
11. Use a suitable substitution to find $$\int (x^2+1)\sqrt{x-2} \ \mathrm{d}x$$
25. Find $$\int \mathrm{e}^{2x}\sin x \ \mathrm{d}x$$
$\dfrac{\mathrm{e}^{2x}}{5}(2\sin x - \cos x) + c$
26. The curve with parametric equations $$x = 36t^2 - \pi^2 \quad y = \dfrac{1}{8}\sin 3t; \quad t \geqslant 0$$ crosses the $x$ axis at $(3\pi^2,0)$ and the $y$ axis at $(0, 0.125)$. Find the exact finite area bound by the curve and the coordinate axes.
$\pi-1$
27. Use the substitution $x = 2\sin \theta$ to find the exact value of $$\int_0^{\sqrt{2}} \dfrac{x^2}{\sqrt{4-x^2}} \ \mathrm{d}x$$
$\dfrac{\pi-2}{2}$
28. Use the substitution $x = \tan \theta$ to find the exact value of $$\int_0^1 \dfrac{1}{(1+x^2)^2} \ \mathrm{d}x$$
$\dfrac{\pi+2}{8}$
29. Use the substitution $x = \csc \theta$ to find the exact value of $$\int_{\sqrt{2}}^2 \dfrac{\sqrt{x^2-1}}{x} \ \mathrm{d}x$$
$\sqrt{3}-1-\dfrac{\pi}{12}$
30. Use integration by parts to find $$\int x^3\sqrt{9-x^2} \ \mathrm{d}x$$