Q1
Answer
Solve the following inequalities, leaving your answer in interval notation:
  1. $\dfrac{2-5x}{6} > \dfrac{3}{5}$
  2. $\dfrac{2x-1}{4}-\dfrac{2}{5} \geqslant 1$
  1. $(-\infty, -\frac{8}{25})$
  2. $[\frac{33}{10},\infty)$
Q2
Answer
Solve the following inequalities, leaving your answer in set notation:
  1. $\dfrac{x}{2}+4 > \dfrac{2x-5}{6}$
  2. $\dfrac{1}{2}(3x-1) \leqslant \dfrac{1}{4}(x+1)$
  1. $\{x: x>-29\}$
  2. $\{x: x \leqslant 0.6\}$
Q3
Answer
A student attempts to solve $\frac{1}{x} > 1$ as follows: $$\dfrac{1}{x} > 1 \Rightarrow 1 > x$$ Explain the student's mistake.
There is a problem with multiplying by $x$ - if $x$ is negative, the inequality sign needs to change direction.
Q4
Answer
Solve the following inequalities:
  1. $-5 < 4x+3 \leqslant 13$
  2. $2x+3 \leqslant 9-4x < x+14$
  1. $-2 < x \leqslant 2.5$
  2. $-1 < x \leqslant 1$
Q5
Answer
A rectangle is such that its length is 6 units greater than its width. Given that the area is at least 40, determine the range of possible values for the length of the rectangle.
At least 10
Q6
Answer
Find the range of values of $k$ for which $$x^2 - kx + k + 3 = 0$$ has no real roots. Give your answer using interval notation.
$(-2,6)$
Q7
Answer
Solve $$3x^2 + 7x + 2 > 0$$ leaving your answer in set notation.
$\{x:x < -2\} \cup \{x: x > -\frac{1}{3}\}$
Q8
Answer
Solve $$3x^2 + 2x - 5 \leqslant 0$$ leaving your answer in set notation.
$\{x: x\geqslant -\frac{5}{3}\} \cap \{x: x \leqslant 1\}$
Q9
Answer
The equation $(k+3)x^2 + 6x + k = 5$ has two distinct real solutions. Find the set of possible values of $k$.
$\{k: k > -4\} \cap \{k: k < 6\}$
Q10
Answer
The equation $x^2 + (k-3)x + (3-2k) = 0$ has two distinct real solutions. Find the set of possible values of $k$.
$\{k: k < -3\} \cup \{k: k > 1\}$
Q11
Answer
By drawing these lines on the same axes, find the set of values for which the line $y = 2x^2 + 3x - 15$ is below the line with equation $y = 8 + 2x$. Give your answer in interval notation to 2 decimal places.
$(-3.65, 3.15)$
Q12
Answer
Find the set of values which satisfies either $5x-1 > 3x+3$ or $2x^2 - 5x - 3 < 0$ or both.
$\{x: x>-\frac{1}{2}\}$
Q13
Answer
Solve $\dfrac{5}{x-3} < 2$ Give your answer using interval notation.
$(-\infty, 3) \cup (\frac{11}{2},\infty)$
Q14
Answer
Solve $$\dfrac{4x-3}{2-x} < 2$$
$x<\frac{7}{6}$ or $x > 2$
Q15
Answer
Solve $$x + 3(x^2-4x+2) > 0$$
$x < \dfrac{2}{3}$ or $x > 3$
Q16
Answer
Determine the range of values which satisfy both the following equations $$6 - 2(x+2) < 10$$ $$(x+1)^2 \geq 4x + 9$$
$-4 < x \leqslant -2$ or $x \geqslant 4$
Q17
Answer
The equation $x^2 + 4kx + 3+11k = 0$ has no real solutions. Find the possible values of $k$.
$-0.25 < k < 3$
Q18
Answer
The equation $x^2 + kx + 8 = k$ has no real solutions. Find the set of possible values of $k$.
$\{k: k > -8\} \cap \{k: < 4\}$
Q19
Answer
Solve $$\dfrac{x^2+15}{x} \geqslant 8$$
$0 < x \leqslant 3$ or $x \geqslant 5$
Q20
Answer
Solve $$\dfrac{3}{x+2} < x$$
$-3 < x < -2$ or $x > 1$
Q21
Answer
Solve $$\dfrac{x+2}{x} \geqslant x$$
$x \leqslant -1$ or $0 < x \leqslant 2$
Q22
Answer
Determine the range of values which satisfy both the following: $$4(2x+3) + x > 47 - 5x$$ $$(5-x)(2x+1) \leqslant 0$$
$x \geqslant 5$
Q23
Answer
Find the set of values which satisfy $$\dfrac{4x+1}{x-2} \geqslant 3$$
$\{x: x \leqslant -7\} \cup \{x: x > 2\}$
Q24
Answer
The set of values which satisfies both the following: $$5x+13 > 4(x+2)$$ $$(x-2)^2 - k(x-2)(x+3) < 0$$ is $\{x: -5 < x < -\frac{17}{4}\} \cup \{x: x > m\}$, where $k$ and $m$ are non-zero constants. Find $k$ and $m$.
$k = 5$, $m = 2$