A Level Maths
Demo
A Level
Functions
1. Determine if the following functions are valid, and, if they are, whether they are one-to-one or many-to-one:
$\mathrm{f}(x) = \pm\sqrt{x}$
$\mathrm{f}(x) = \dfrac{1}{x}$
one to many, not a function
one to one, function
2. Find the range of the following functions:
$\mathrm{f}(x) = x^2-5, \quad x \in \{-2,0,2\}$
$\mathrm{f}(x) = \dfrac{2}{1-x}, \quad x \in \{-2,0,2\}$
$\{-5,-1\}$
$\{-2,\frac{2}{3},2\}$
3. A function is linear from $(-10,14)$ to $(-4,2)$, and from $(-4,2)$ to $(6,27)$. Solve $\mathrm{f}(x) = 12$
$x = -9, 0$
4. $$\mathrm{f}(x) = 2x^2 + 8x - 1$$ Find the largest possible domain for $\mathrm{f}$ such that it has an inverse.
$x \geqslant -2$ or $x \leqslant -2$
5. $$\mathrm{f}:x\mapsto x^2+2x-2$$ Find $\mathrm{f}:\{1, 2\}$
$\{1, 6\}$
6. Sketch the following graphs:
$y=|x-1|$
$y=|4x-3|$
7. Sketch the following graphs:
$y=|7-x|$
$y=-|x-1|$
8. Given $\mathrm{f}(x) = \dfrac{1}{x-2}$ and $\mathrm{g}(x) = 3x+4$, solve $\mathrm{gf}(x)=16$
$\dfrac{9}{4}$
9. Given $\mathrm{f}(x) = 5-2x$, solve $$\mathrm{f}^2(x) - (\mathrm{f}(x))^2 = 0$$
$\dfrac{6\pm\sqrt{6}}{2}$
10. $$\mathrm{f}(x) = \dfrac{x+6}{x+2}$$ $$\mathrm{g}(x) = 7-2x^2$$
Find the range of $\mathrm{g}$.
Solve $\mathrm{f}(x) = \mathrm{f}^{-1}(x)$.
$\mathrm{g}(x) \leqslant 7$
$x = -3, 2$
11. The function $\mathrm{f}$ is defined by $\mathrm{f}(x) = x^2+4x+9, \quad x\geqslant a$
State the smallest value of $a$ for which $\mathrm{f}^{-1}(x)$ exists.
Find $\mathrm{f}^{-1}(x)$ and state its domain.
$-2$
$\mathrm{f}^{-1}(x) = \sqrt{x-5}-2, \quad x \geqslant 5$
12. Solve:
$|3x+1|=5$
$\left|\dfrac{x-5}{2}\right|=1$
$-2, \dfrac{4}{3}$
$3, 7$
13. Solve:
$\left|\dfrac{x}{6}-1\right|=3$
$|3x-5|=11-x$
$-12, 24$
$-3, 4$
14. Solve:
$3+\mathrm{e}^{2x}=7\mathrm{e}^{2x}$
$\mathrm{e}^{2x}=\mathrm{e}^x+2$
$-\frac{1}{2}\ln2$
$\ln 2$
15. Solve:
$|x-9| < 2$
$\left|3-\dfrac{3x}{4}\right| > \dfrac{1}{4}$
$7 < x < 11$
$x < \dfrac{11}{3}$ or $x > \dfrac{13}{3}$
16. Solve:
$|2x+9| > 14 - x$
$-|3x+4| \leqslant 2x-9$
$x > \dfrac{5}{3}$ or $x < -23$
$x \geqslant 1$ or $x \leqslant -13$
17. Solve:
$3|4x-3|-1=14$
$3-|2x+3|=1$
$-\frac{1}{2}, 2$
$-\frac{5}{2}, -\frac{1}{2}$
18. $$\mathrm{f}(x) = 2x^2-1, \quad x \geqslant a$$
Given that $\mathrm{f}^{-1}$ exists, suggest a suitable domain for $\mathrm{f}$.
Find a solution to $\mathrm{f}(x) = \mathrm{f}^{-1}(x)$.
$x\geqslant 0$
$x=1$
19. The function $\mathrm{f}$ has domain $-5 \leqslant x \leqslant 14$ and is linear from $(-5,-8)$ to $(0,12)$ and from $(0,12)$ to $(14,5)$.
Find $\mathrm{ff}(0)$.
Given $\mathrm{g}:x\mapsto\dfrac{2x-5}{10-x}$, find $\mathrm{fg}(7)$.
$6$
$\frac{21}{2}$
20. Solve:
$\ln(3x-2) - \ln 2 = \ln(x+4)$
$2\ln(x) = \ln(2x+3)$
$x=10$
$x = -1,3$
21. Given $$\mathrm{f}:x\mapsto x^2+3$$ $$\mathrm{g}:x\mapsto 2x+2$$ solve $$\mathrm{fg}(x) = 2\mathrm{gf}(x)+15$$
$3$
22. Solve
$3|x| + 5 = 5|x|-1$
$|4-x| = |4x-1|$
$\pm 3$
$\pm 1$
23. Solve:
$|2x-3| > |x+3|$
$|4x-1| < |x+1|$
$x < 0$ or $x > 6$
$0 < x < \dfrac{2}{3}$
24. Solve:
$6|x| \geqslant |2-3x|$
$|x-3| > 2|x+1|$
$x \geqslant \dfrac{2}{9}$ or $x \leqslant -\dfrac{2}{3}$
$-5 < x < \dfrac{1}{3}$