Expand $$(1+2x)^4$$
$1 + 8x + 24x^2 + 32x^3 + 16x^4$
Expand and simplify $$(3-x)^4 + (3+x)^4$$
$162 + 108x^2 + 2x^4$
Find, in ascending powers of $x$, the first three terms in the expansion of: - $(2+3x)^6$
- $(3-4x)^5$
- $64 + 576x + 2160x^2$
- $243 - 1620x + 4320x^2$
Find, in ascending powers of $x$, the first three terms in the expansion of: - $(4x-\frac{1}{2})^7$
- $(2-\frac{1}{4}x)^9$
- $-\dfrac{1}{128} + \dfrac{7}{16}x - \dfrac{21}{2}x^2$
- $512 - 576x + 288x^2$
- Find the first five terms, in ascending powers of $x$, of the expansion of $(1+2x)^{12}$.
- Hence estimate $1.02^{12}$ to 5 decimal places.
- $1 + 24x + 264x^2 + 1760x^3 + 7920x^4$
- $1.26824$
In the binomial expansion of $(1+kx)^6$, where $k$ is a constant, the coefficient of $x^3$ is twice as large as the coefficient of $x^2$. Find $k$.
$\dfrac{3}{2}$
- Find the first four terms, in ascending powers of $x$, of the binomial expansion of $(1+2x)^7$.
- Hence find the coefficient of $x$ in the expansion of $(1+2x)^7(3+2x)^4$.
- $1+14x+84x^2+280x^3$
- $1350$
- Find the first four terms, in ascending powers of $x$, of the binomial expansion of $(2+x)^9$.
- Hence find the coefficient of $x^3$ in the expansion of $(1-\frac{1}{8}x)^2(2+x)^9$.
- $512+2304x+4608x^2+5376x^3$
- $4260$
Given $$(2+kx)^6 = a + bx + bx^2 + cx^3 + ...$$ where $k$ is a non zero constant, find the values of $a$, $b$ and $c$.
$a = 64$, $b = 153.6$, $c = 81.92$
Using the first three terms, in ascending powers of $x$, of the binomial expansion of $(2-3x)^{10}$, estimate the value of: - $1.97^{10}$
- $3.94^{10}$
Find the term which is independent of $x$ in the expansion of $$\left(4x^3-\dfrac{1}{2x}\right)^8$$
$7$
Given $$(1+\sqrt{2})^5 = a + b\sqrt{2}$$ find $a$ and $b$.
$a=41$ and $b=29$
In the binomial expansion of $\left(k-\dfrac{x}{2}\right)^6$, one of the terms is $960x^2$. Find the coefficient of the $x^3$ term.
$-160$
Given that $k$ is a non zero integer and $n$ is a positive integer, and that $$(1+kx)^n = 1 + 40x + 120k^2x^2$$ find $k$ and $n$.
$k=\dfrac{5}{2}$ and $n=16$
Given that $k$ is a positive constant and $a$ is a constant, and that $$(2-kx)^8 = 256 + ax + 1008x^2$$ find $k$ and $a$.
$k=\dfrac{3}{4}$ and $a = -768$
Find the coefficient of $x^2$ in the expansion of $$(2-3x)^2(1+4x)^7$$
$1017$
- Find the binomial expansion of $\left(1+\dfrac{1}{4}x\right)^{10}$ in ascending powers of $x$, up to and including the term in $x^3$.
- Hence estimate $\left(\dfrac{41}{40}\right)^{10}$ to 3 significant figures.
- $1 + \dfrac{5}{2}x+\dfrac{45}{16}x^2 + \dfrac{15}{8}x^3$
- $1.28$
Find the first four terms, in ascending powers of $x$, of the expansion of $$(3+4x-4x^2)(1+2x)^6$$
$3 + 40x + 224x^2 + 672x^3$
Given $$(1+ax)^n = 1-30x+405x^2+bx^3$$ where $n$ is a positive integer and $a$ and $b$ are constants, find $a$, $b$ and $n$.
$n=10$, $a=-3$, $b=-3240$
Find the coefficient of $x^5$ in the expansion of $$(1-x)^5(1+x)^6$$
$10$
Use the binomial expansion of $(2x-4)^5$ to find the coefficient of: - $y^2$ in the expansion of $\left(\dfrac{y+16}{4}\right)^5$
- $z^8$ in the expansion of $\left(\sqrt{2}z-2\right)^5\left(\sqrt{2}z+2\right)^5$
$-1024 + 2560x - 2560x^2 + 1280x^3 - 320x^4+32x^5$
- $40$
- $-320$
Given that $k$ is positive and $n$ is a positive integer, and that $$(1+kx)^n = 1 + \dfrac{7}{2}x + ax^2 + ax^3 + ...$$ where $a$ is a non zero constant, find $n$ and $k$.
$n=14$ and $k=\dfrac{1}{4}$
The constant term in the expansion of $$x^4\left(2x^2+\dfrac{m}{x}\right)^7$$ is $896$. Find $m$.
$2$
Use a suitable expansion to find the first 4 digits of $1003^{80}$.
$1270$